
Sandfly Performance
2024-05-31

Introduction
Sandfly is an agentless intrusion detection and incident response platform for Linux. Our
product is known for high-performance, wide compatibility, and low risk of causing stability
issues. We are the no drama security monitoring tool for Linux

This document describes performance considerations for Sandfly. While each network is
different, these guidelines are a fair representation of what to expect and how we reduce
customers’ risk by minimizing performance impact. We also list several recommendations for
making Sandfly scans more efficient and reducing impact on systems and networks.

General Performance Criteria
Sandfly has strict guidelines about what we do and don’t do that lower our impact risk:

1) We never hook into the kernel which is not only risky, but often causes performance,
compatibility, and upgrade issues.

2) We use multiple methods to limit CPU usage.
3) We never do full harddisk signature sweeps like traditional anti-virus, unless specifically

directed by manual incident response operations.
4) We compress network data to conserve bandwidth.
5) We have multiple failsafes to halt scans taking too long on systems.



Performance Impact Areas
The areas of potential impact for Linux are:

- CPU
- Memory
- Disk
- Network

We discuss below what Sandfly does to limit impacts in each.

CPU
Because Sandfly does not tie into the kernel with system call hooking, eBPF system call
monitoring, memory sweeps, and similar tactics, we have a low chance of causing high CPU
loads or stability issues. Sandfly incorporates the following protections to manage CPU risks:

- Never hooking the kernel
- Single thread scanning
- Low process priority
- Data caching

Never Hooking the Kernel
Traditionally, agent-based solutions will hook kernel system calls or use eBPF to monitor the
same. While this is effective for certain applications, it causes risks in terms of performance and
compatibility. Sandfly performs all our investigation operations without hooking into the kernel.

Single Thread Scanning on Host
Sandfly is written in Go. Go is a high performance memory safe multithreaded programming
language designed by Google. While the backend systems are multithreaded, our on-host
scanner deliberately does not multithread. There are several reasons we do not multithread our
scanner:

1) Scans are fast enough for a single core.
2) Eliminates potential bugs coordinating threads.
3) A runaway scan can only use 100% of a single core on a multicore system.

The third point is the most salient. Even if all our failsafe mechanisms fail to shut down a scan,
the worst that happens is a single core is consumed until the scan completes. On a modern
processor this leaves remaining cores to service other tasks without consequence.



Low Process Priority (Nice Level)
Sandfly uses a medium-low priority (nice level) by default. Manual scans may run at a higher
priority if selected by the user. The API allows full control of what priority level to run any scan.
Low priority is more than sufficient for most scans without causing noticeable system load.

Data Caching
Sandfly makes intelligent use of caching. For instance, instead of scanning the process table
many times, we build a process table cache for each session. All Sandfly modules run against
this cache. We do the same for file, user, and other forensic attributes.

Memory
Sandfly can run on systems ranging from over decade-old, obsolescent hardware to modern
cloud and embedded devices. Sandfly also runs well on memory constrained environments.

Memory Caching Limits
We use caching inside the Sandfly binary for performance, but we limit the maximum size of a
cache so that memory usage is controlled.

Memory Safety and Efficiency
The Go language is well-known for memory safety and efficiency. We have tested our binary on
the following CPU and memory constrained systems with no issues:

- AMD64 Low End Shared CPU VM w/1GB RAM
- Arm7 Embedded System w/256MB RAM
- MIPS LE Power over Ethernet (PoE) Camera w/256MB RAM

Test results

System Type Avail Memory Used Memory

AMD64 Shared CPU VM 1GB 130MB*

Arm7 Embedded 256MB 55MB*

MIPS LE PoE Embedded 256MB 52MB*

* Note that free memory is used efficiently by Linux and these values will shrink
considerably if the remote system has less free RAM available.



Disk
Disk I/O is often the most crucial bottleneck for performance. For instance, it is possible to have
a 64 core CPU at low utilization. But, if disk I/O is at 100% capacity, the entire system will
perform poorly no matter how much CPU headroom is present. Sandfly takes special care to
ensure we do not cause large disk impacts.

Minimal Disk Write
Sandfly does not write to the disk except to upload the Sandfly binary. We can also optionally
write to ramdisk to preserve embedded and write-limited storage (such as SD cards). The
binary is deleted after the scan is run to not consume drive space.

Disk Performance Impacts
The most resource intensive Sandfly scans are file and directory checks. Internally, Sandfly
does the following:

- Limits recursive checks to not sweep the entire, or even large parts, of a disk.
- Does not perform legacy signature checks of files (e.g. massive Yara scans), which is

not only data intensive, but tends to work poorly on rapidly evolving Linux malware.
- Limits search depth on files so we do not waste time crawling large blocks of data.
- Caching to not repeat expensive operations such as hash or entropy calculations.

The most expensive file checks are those calculating cryptographic hashes and file entropy.
Both of these operations require reading in entire files to calculate these values. Our default
checks limit the number of directories we will scan for this data and we use caching as
appropriate to ensure we don’t calculate these values unless needed.

Other checks involving incident response or “reconnaissance” checks that pull file attributes for
drift detection can have varied impact. If a customer scans the top level root file system, for
instance, they can easily profile millions of files on a Linux server. This will cause both high disk
I/O and high CPU loads on a single core. For this reason we recommend customers to
avoid these operations unless they are actively investigating an incident.

Network
Sandfly passes network traffic to and from remote endpoints in two ways:

1) Sending our investigation binary to the system to execute security sweeps.
2) Retrieving results from an endpoint for analysis and presentation.

Inbound, the Sandfly binary is about 6MB in size (smaller than many JPEGs). It is pushed over
during the initial connection and removes itself when done.



Outbound, alert data is compressed and is reduced in size by about 90% when sent. This
results in significant network data savings and speed. Network I/O can be further limited by
reducing the frequency and number of checks Sandfly does each time we connect to a host.
Sandfly runs perfectly fine on mobile data connections with limited bandwidth.

Performance Graphs
Below is a 24 hour graph from a test host with 1GB of RAM on a low-end shared CPU VM. We
deliberately use the cheapest commercially available shared CPU virtual host with low RAM for
tests. It’s the marginal systems where we want to make sure we don't cause impacts.

The irregular spikes are the random schedules of Sandfly scans. Average CPU usage when
Sandfly runs is in the 2-4% range with brief spikes to 100%. For this test we are running a
heavier than default Sandfly scan each time (65-100% Sandfly module selection) to show a
worst case. CPU, network, and disk I/O are well contained and not a bottleneck.



Fail-safes
Sandfly has multiple fail-safes built-in to ensure scans do not take too long or malfunction.

Individual Sandfly Timeout
Each module has an individual value on how long it may run before being stopped by the
Sandfly engine. The default value is typically 360 seconds (6 minutes) with a maximum of 1800
seconds (30 minutes). Sandflies exceeding the individual timeout value are stopped and
reported as a timeout error. The next Sandfly module is then run normally.

Group Sandfly Timeout
If two individual Sandfly modules timeout in a session, we will halt the entire scan. This avoids
overwhelming a remote system that is likely overloaded with tasks unrelated to Sandfly. Two
modules timing out will generate a full scan stop error in the Sandfly error log.

Global Timeout at Node
As a final check, the scanning nodes implement a global timeout, which defaults to one hour if
the scan hasn’t completed for that system. This global timeout ensures that a system with
unknown problems does not continue to run scans even if very slow.

Recommendations
Overall, Sandfly takes great care to not overwhelm systems. Customers looking to lower system
impacts further may consider the following:

- Do not run intensive incident response sandflies except as needed.
- Limit file and directory checks to a lower frequency schedule.
- Lower Sandfly random percentage selection values on scheduled scans.

Customers running Sandfly have always noted our significantly lower system performance
impacts vs. conventional agent-based products. We take pride in knowing we can protect
virtually any Linux system with little risk to the host. If you have any further questions about
performance or compatibility, please reach out to our support team.


