
Agentless Linux Password Auditing
2024-08-26

Weak and default passwords are a major way to compromise Linux. Not only do many systems
have default credentials that can be targeted by attackers, users often select bad passwords for
their own use. Sandfly addresses this risk with a very unique feature:

Agentless Password Auditing

Sandfly’s agentless password auditor protects all types of Linux systems - whether in the cloud,
on-prem, modern, or legacy systems. We even work on embedded and appliance devices. Most
importantly, we work without loading intrusive and frequently incompatible agents on endpoints.

Fast and Safe Password Auditing

While we know weak
passwords on Linux are a
threat, the challenge lies in
effectively finding them across
all Linux distributions, versions,
CPU types, and more. It is
especially difficult to check for
weak passwords without
centrally storing password
hashes and risking exposure.

Sandfly solves these problems
with password audits conducted
directly on systems we monitor
agentlessly. Sandfly is able to
determine if any accounts on a
system have an easily guessed
password in seconds.



External Brute Force Attacks are Common
Many attackers use external password brute forcing in order to gain access to systems. As a
result, brute force attempts are a common part of background noise and are often overlooked so
as not to overload security personnel with false alarms. However, if an attacker happens to hit a
legitimate username/password combination, they will look like any other user and many
organizations may not notice.

External Brute Force Limitations
External brute force attacks are not limited to intruders, they are also commonly done by
security auditors. However, they both share the same limitations that reduce their effectiveness:

- Time delays due to network latency and invalid authentication attempts.
- Auto-banning of brute force attempts.
- Can not see all the accounts on a system that may have weak passwords.

Given these limitations, brute force attacks and external audits are often limited to dozens or, at
most, hundreds of attempts before the need to move on. It is simply too slow to run massive lists
of passwords, or attackers may get blocked by the local system with automated defenses. For
instance, a login delay of five seconds would limit a password audit to at most 12 attempts a
minute. This is very optimistic as many systems disconnect after a few bad attempts, and some
even block the IP address if repeated attempts are made.

As a result, attackers and security teams typically use small and focused password lists for
brute force attacks. They do not launch millions, thousands, or even hundreds, of attempts in
most cases. Further, for security teams doing audits, a new problem rears its head as well:

Security teams may miss accounts on systems when doing external audits as they
cannot see all usernames present.

For instance, an account named “adminbackup” is not a common default user, but if an attacker
were to discover this account during their reconnaissance they may attempt to login with it.
However external audits may be completely unaware of this risk and not check for this account.

A New Approach: On-Host Password Auditing
As opposed to external audits, Sandfly’s on-host auditing runs on the actual system being
monitored as part of our core functionality. This is significantly faster and more accurate than
external auditing. It can also be done far more frequently ensuring that bad passwords are
rapidly found without risk of banning or generating alerts for security teams. The result:

Security teams get instant password security feedback with virtually no downside.



Sandfly’s on-host password auditing for Linux offers numerous benefits, which include:

- Targets highest risk passwords that will lead to immediate compromise.
- Compliance with security policies such as GDPR or PCI, by avoiding the transfer of

password hashes off-host for auditing which exposes them to theft1.
- Compatibility with a wide range of Linux distributions, including legacy and embedded

systems.
- Custom password lists.
- Auditing of all user accounts regardless of what they are named.
- Not subject to latency delays or auto-banning.
- Will not flood security teams with brute force false alarms.

By employing on-host password auditing, organizations can enhance security, maintain
compliance, and ensure comprehensive password assessments across all infrastructure.

On-Host Auditing Solves Multiple Technical Issues
Sandfly’s on-host auditing solves multiple problems discussed above.

Targets Highest Risk Passwords
On-host auditing targets the highest risk passwords likely to be tried by external brute force
attempts. It shuts down easy low-hanging fruit attack paths by making sure common passwords
are found before attackers get to them.

Doesn’t Expose Sensitive Data
Password hashes are never taken off the remote system to audit. This eliminates a potential
leakage risk and ensures sensitive data is better protected.

Works on All Linux Distributions
The password auditor works on any system Sandfly can monitor. This includes modern to
legacy systems as well as embedded systems and appliances. It also includes most CPU types
used on servers and embedded systems.

1 Under GDPR, hashed passwords are considered personally identifying information (PII). Under US laws
such as CCPA, it depends on whether compromise of a hashed password allows access to PII - if an
attacker is able to brute-force a stolen password hash and access PII with these credentials, the hash will
be considered PII.



Custom Passwords
Many organizations have to deal with users sharing passwords and using common accounts
with shared passwords. Sandfly makes it extremely simple to audit for these passwords and
eliminate them.

Sees All Accounts
Sandfly directly looks at user accounts on the target system and all users with password hashes
are audited regardless of what they are named. Unknown accounts are identified and audited
without any gaps in coverage.

Immune to Latency Issues
By moving password auditing to on-host, we eliminate all network and authentication latency
issues. Checking for weak passwords directly on a host takes only a few seconds per user on
most systems and can cover far more passwords than external auditing ever can.

Won't Cause Banning or False Alarms
Sandfly's password auditing process examines user password hashes directly on the host,
rather than conducting brute force attacks against authentication services. As a result, external
auto-banning mechanisms, such as fail2ban, IPtables, and network monitoring systems, are not
triggered by excessive login attempts. Users can employ Sandfly's password auditing without
concerns of being locked out of their hosts or overwhelming security teams with alerts.

Password Auditing Sandfly Modules
Sandfly has multiple built-in password auditing modules:

user_password_auditor_password_is_username - Username is the password. For example,
root/root, admin/admin, etc. This is a major and common risk and is enabled by default.

policy_user_password_auditor_top_worst_small_list - User has a password in the
approximately top 100 worst passwords. Enabled by default.

policy_user_password_auditor_linux_common - User has a password that is a common Linux
user or service name. For example: apache, nagios, nginx, ansible, etc. Enabled by default.

policy_user_password_auditor_top_worst_big_list - User has a password in the approximately
top 500 worst passwords. This module is disabled by default, but can be run manually or
enabled by the customer for automated scheduling if they desire.



policy_user_password_auditor_custom_password_check - Customer defined list of passwords
they want to make sure are not being used anywhere. Ideal for finding notorious shared
corporate passwords that linger for years. Can be enabled by the customer as needed.

All password modules can be run on demand or in an automated schedule.

Custom Password
Auditing
As with all Sandfly modules,
the password auditing checks
can be cloned and modified
to search for custom threats.
For example, many
organizations have shared
passwords across accounts
(the infamous corporate login
credential). These passwords
pose a particularly high risk
as they are rarely changed
and they often persist even
after employees depart.

Searching for custom passwords is easy and fast for organizations dealing with this common
problem.

Performance Benchmarks
When performing password auditing on the host, it is natural to inquire about potential CPU
impacts. Sandfly is not trying millions of passwords, we are instead using small lists that are
likely what external attackers would use to gain initial access. Using small lists of high risk
passwords gets maximum effect with minimal impacts.

To assess worst-case impacts, the auditing modules were tested on various low-specification
Linux systems. The highest-performing system was a low-end Intel i5. Additional tests were
conducted on low-end shared CPU cloud VMs, including Amazon ARM EC2 cloud instances.
Lastly, the modules were tested on embedded ARM and MIPS Power-Over-Ethernet (POE)
network devices (IP Cameras) with the lowest processing power.



The password auditing modules were tested to determine the time required to audit each user
across the host performance spectrum. The chart provided illustrates the time taken for each
module to audit a single user. For instance, if an audit took approximately 5 seconds, that is for
one user; for 10 users, the total audit time would be around 50 seconds.

The username is the password check is nearly instantaneous, even on low-powered embedded
devices. Due to its low impact and critical importance, this check is enabled by default.

Top 100 worst passwords and Linux usernames checks exhibit similar performance metrics as
the list sizes are nearly the same (about 100 passwords). On modern CPUs, they take a few
seconds per user. On low-power devices, such as some embedded systems, each check takes
approximately 10 seconds per user.

On Power-Over-Ethernet (POE) network devices, the impact on speed becomes more
noticeable as these devices have relatively low processing power. Audits per user can take over
100 seconds for the Top 100 and Top Linux usernames. However, conducting periodic audits on
these devices is recommended, as they often have limited users and the default credential risk
they pose is significant. Spending a minute of CPU time to audit embedded devices can
save countless hours, days, or weeks of incident response work later.



Regarding the Top 500 worst passwords, the time taken is still reasonable for bare metal and
VMs (even low-end). For embedded devices, there is a time penalty that scales with the number
of users. Despite this, occasional manual audits of embedded systems may still be worthwhile if
the number of users checked is kept low. For modern high spec CPU systems, the Top 500
checks are fast and a good additional auditing module to enable for most organizations.

Custom password checks would depend on the size of the list, but can be judged by the metrics
above for scale.

Limiting Performance Impacts
The password auditing engine incorporates a parameter called
'max_random_users_to_attempt,' which determines the maximum number of users to be
audited in a random manner. By default, this parameter is set to 10 users.

For example, if there are five users with a password hash, all of them will be audited. However,
if a system has 21 users, Sandfly will randomly select 10 users for auditing. In subsequent
audits, the random selection process is repeated, ensuring that all users are eventually audited
over time. This value can be reduced to lower potential impacts even further if desired (e.g.
setting it to 2 users max if checking embedded systems).

Another valuable feature is the 'password_is_username' parameter, which instructs Sandfly to
check if the username and password are identical. This check takes only a split second to run,
and it is recommended to keep it enabled on all audit modules for optimal security.

The password auditing engine incorporates standard timeout values, ensuring that audits do not
exceed a specified duration (default of 360 seconds). This feature guarantees that the CPU will
not be overwhelmed with auditing tasks for an indefinite period.

Additionally, since the password auditing process operates on a single core and at low priority, it
is unlikely to have a significant impact on the vast majority of Linux systems where it is
employed, even in embedded systems.

Password are Still Everywhere
Using Sandfly's password auditing checks is highly recommended for Linux deployments, even
when password authentication is not believed to be in use. We have seen instances of
customers predominantly employing SSH keys, while password authentication was still present
on some systems - for example, being enabled by users without the security team’s knowledge.

For embedded Linux systems and appliances, the likelihood of password usage is considerably
higher. It is crucial to perform regular checks to maintain security on these devices.



Auditing for Passwords is Fast and High Value
Sandfly’s password auditing feature is very fast and provides instant value. Identifying weak
passwords happens in seconds and gives security team feedback on what systems need
attention immediately. Denying attackers easy access to systems using brute force methods is
critical in defending Linux infrastructure.


